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Supplementary Materials

I. ADDITIONAL NOTES

Remark 1: The valid range for the real proportion of outliers
in measurements is [0, 0.5], because if more than half of
measurements are unreliable, it is meaningless to do data-
based statistical inference. Hence, 0.5 is the upper bound. This
fact is fundamental in mathematical and applied statistics. □

Remark 2: To guarantee figure cleanness, we distinguish
different results only by different colors. Readers who have
problems in identifying colors can change the shared source
codes to generate different line types to display results. □

II. ADDITIONAL EXPERIMENTS

A. Breakdown Test

In the main body of the article (see Subsection VII-D
“Sensitivity Analysis”), we fix the parameter ϵ of the algorithm
and let the true proportion ϵreal change from 0 to 0.5. In
this supplementary experiment, we randomly fix the true
proportion ϵreal := 0.3, and let the parameter ϵ of the
algorithm vary in [0, 0.5]. We have the result in Fig. 1. Since
ϵreal := 0.3 is fixed, the TMKF and the TK only generate one
result, respectively. The result of the TMKF gives the lower
reference line (in black), while that of the KF gives the upper
one (in red). Fig. 1 shows that the parameter ϵ used in the
algorithm is insensitive to the true proportion ϵreal := 0.3.
This conclusion is consistent with that in Subsection VII-D
“Sensitivity Analysis”. Therefore, we finished validating the
claims made in Remark 2 of the main body of the article.
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Fig. 1. Parameter sensitivity against the true proportion of outliers.

Remark 3: Note that in the ϵ-normal case, we only allow ϵ
to vary from 0 to 0.0303. The reason can be found in Remark
2 of the main body of the article. □

B. Computational Complexity Analysis

As we can see in Algorithm 1, the most computationally
intensive step is to solve (34) to obtain the worst-case scenario
(i.e., Σ∗

x,k and Σ∗
v,k) under the Wasserstein ambiguity sets.

Problem (34) is a SDP which is numerically challenging to
solve. Instead, if we use the moment-based ambiguity sets, we
need to solve (36) to obtain the worst-case scenario. However,
(36) can be analytically solved by Theorem 5. As a result, all

the steps in Algorithm 1 have closed-form solutions, implying
that the computational complexity is no longer an issue. This
is the reason why we adopted the moment-based ambiguity
sets throughout experiments.

Let r := max{n, p,m} where n is the dimension of
the state vector xk, p of the process noise vector wk, and
m of the measurement vector yk. Since for a usual state
estimation problem n ≥ p and n ≥ m, it is well-known that
the (asymptotic) computational complexity of the canonical
Kalman filter at each time step is O(r3) = O(n3). This
is because all computational operations at each time step
of the Kalman filtering are just matrix addition/subtraction,
matrix multiplicity, and matrix inverse; matrix multiplicity and
matrix inverse operations admit cubic order of computational
complexity in terms of the dimensions of the involved matri-
ces. Therefore, likewise, the computational complexity of the
proposed method is also O(n3) at each time step, given that
the moment-based ambiguity sets are used.

Remark 4: The computational complexity of matrix mul-
tiplicity and matrix inverse operations can be reduced using
advanced algorithms such as the Strassen algorithm. The men-
tioned “cubic order” are just results given by the conventional
matrix multiplicity (e.g., definition) and matrix inverse (e.g.,
Gauss-Seidel) methods. □

For a demonstration, under the moment-based ambiguity
sets, we augment the system matrices to improve the di-
mensions of the state vectors and the measurement vectors.
Specifically, we let F̄ real

k , Ḡk, H̄k, Q̄k, and R̄k form a new
uncertain linear system, where

F̄ real
k := blkdiag{F real

k ,F real
k ,F real

k ,F real
k ,F real

k },

Ḡk := blkdiag{Gk,Gk,Gk,Gk,Gk},

H̄k := blkdiag{Hk,Hk,Hk,Hk,Hk},

Q̄k := blkdiag{Qk,Qk,Qk,Qk,Qk},

and R̄k := blkdiag{Rk,Rk,Rk,Rk,Rk}. To be specific, for
example,

F̄ real
k :=


F real
k

F real
k

F real
k

F real
k

F real
k

 .

In this case, the dimension of the state vector is promoted
from 2 to 10, and that of the measurement vector is promoted
from 1 to 5.

We let α = 1 and the true proportion of outliers equals
to 0.05. Parameters of the candidate filters keep the same as
used in the experiments of the main body of the article. The
results are shown in Table I. We can see that the conclusions
drawn from Table I are the same to those drawn from Table
III in the main body of the article: the MKF is attractive for
its performance and computational efficiency. (Besides, the
calculation burden does not significantly increase as the scale
of the problem rises.)
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TABLE I
RESULTS WHEN α = 1 AND ALSO OUTLIERS (n = 10)

Filter RMSE Avg Time Filter RMSE Avg Time
TMKF 7.23 2.83e-5 τ -KF [27] Comp. Slow
KF 35.78 2.53e-5 WKF [28] 29.76 191.33e-5
HKF [33] 33.78 4.18e-5 MKF[Ours] 26.17 2.95e-5

Comp. Slow stands for Computationally Slow.

However, the difference between the performances of the
TMKF and the MKF is still significant. Therefore, we are
reminded again that robust filters are just remedial solutions
against uncertain conditions: whether they are satisfactory or
not depends on the real demands of the estimation accuracy
for specific problems. If the prescribed accuracy cannot be
obtained by robust solutions, what we can do is only to
endeavor to improve the exactness of the nominal model (i.e.,
improve the modelling precision). To validate this point, we
alternatively let α = 0.5, i.e., the accuracy of the nominal
model is improved. We have the results in Table II. It shows
that the difference between the performances of the TMKF
and the MKF becomes smaller.

TABLE II
RESULTS WHEN α = 0.5 AND ALSO OUTLIERS (n = 10)

Filter RMSE Avg Time Filter RMSE Avg Time
TMKF 10.07 3.14e-5 τ -KF [27] Comp. Slow
KF 28.33 3.29e-5 WKF [28] 25.30 193.51e-5
HKF [33] 23.18 3.31e-5 MKF[Ours] 21.84 3.20e-5

Comp. Slow stands for Computationally Slow.

C. Student’s t-Distributed Measurement Noise

In this subsection, we investigate the performances of
the candidate filters for Student’s t-distributed measurement
noises. The degree of freedom of the used Student’s t-
distribution is set to be 3. But the covariance of measurement
noise vk at each time step is kept unchanged as Rk. Note
that although the variance σ2 of a t-distribution is determined
by its degree of freedom ν through σ2 = ν

ν−2 for ν ≥ 3, it
can be scaled by constant coefficients. For example, supposing
a random variable T follows a t-distribution with degree of
freedom ν, the variance of 1√

ν
ν−2

T is unit.

Parameters of the candidate filters are tuned to perform best,
respectively, for this new instance. (Details can be found in the
shared source codes.) The results when only outliers exist are
shown in Table III, while those when both model uncertainties
and outliers exist are shown in Table IV. Note that in this case,
the TMKF designed for Gaussian-noise models is no longer
optimal for the t-noise true model (i.e., it reduces to the KF
when α = 0).

TABLE III
RESULTS WHEN α = 0 AND ONLY OUTLIERS (T-DISTRIBUTED AND n = 2)

Filter RMSE Avg Time Filter RMSE Avg Time
TMKF 6.38 1.58e-5 τ -KF [27] 7.07 26.00e-5
KF 6.38 1.18e-5 WKF [28] 6.80 121.51e-5
HKF [33] 6.38 1.66e-5 MKF[Ours] 6.72 1.31e-5

TABLE IV
RESULTS WHEN α = 1 AND ALSO OUTLIERS (T-DISTRIBUTED AND n = 2)

Filter RMSE Avg Time Filter RMSE Avg Time
TMKF 3.53 1.16e-5 τ -KF [27] 8.73 22.62e-5
KF 13.40 0.85e-5 WKF [28] 8.34 115.05-5
HKF [33] 13.75 1.25e-5 MKF[Ours] 8.40 1.28e-5

As we can see, when there are no model uncertainties (see
Table III), the TMKF, KF, and HKF have the same perfor-
mance, and the τ -KF, WKF, and MKF perform worse than
them. In other words, the Huber-based outlier-insensitive filter
(HKF) no longer has advantage over the KF. This is because
the measurements subject to t-distributed measurement noises
do not have significantly outstanding outliers; see Fig. 2. In
contrast, in the experiments in the main body of the article, we
added significantly outstanding outliers; see Fig. 3. The two
cases are all common in signal processing practices. Therefore,
the outlier-robust methods (i.e., HKF and MKF) are more
suitable for the cases where outliers significantly exist. Again,
we see the price of robustness under uncertain conditions is
sacrificing the optimality under perfect conditions because the
MKF has larger RMSE than the HKF when there are no model
uncertainties.
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Fig. 2. Measurements contaminated by t-distributed noises.
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Fig. 3. Measurements contaminated by significant outliers.

When there exist model uncertainties (see Table IV), as
expected, the τ -KF, WKF, and MKF perform better because
they are relatively robust against uncertainties. In this case,
the MKF has smaller RMSE than the HKF, which verifies the
claim that the sacrifice of optimality under perfect conditions
might offer the robustness under uncertain conditions.

III. CONCLUSIONS

1) The proposed outlier-robust filtering frameworks that use
influence functions in Theorem 6 are more suitable for
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the cases that measurements contain significantly out-
standing outliers and for the case that the noise models
are unknown. If measurement noises are t-distributed,
it means that the system model is exactly known so
that we can derive optimal filters for t-distributed noises
(theoretically, this is still possible no matter whether the
mathematical derivation is easy or not; Cf. [1]). However,
a filter that is optimal (or suitable) for t-distributed noise
is likely to lose robustness for other types of noises.

2) The price of the robustness under uncertain conditions is
sacrificing the optimality under perfect conditions.

3) Robust filters are just remedial solutions. If the modelling
accuracy can be improved without much additional costs,
the robust solutions are not the first-hand choices. Only
when the model cannot be refined with acceptable costs
or the performances of the robust filters are satisfactory,
the robust filters can be chosen.

The highlights listed above verify the basic philosophy: noth-
ing is free. We cannot expect a method to be satisfactory for
all problems.

IV. FURTHER READING

Generally speaking, statistical signal processing deals with
two kinds of problems: signal estimation and signal detection.
The former concept corresponds to Parameter Estimation in
mathematical and applied statistics, while the latter corre-
sponds to Hypothesis Test. In other words, the two concepts,
signal estimation and signal detection, are coined for signal
processing practice when we try to use statistical definitions
and methods, parameter estimation and hypothesis test, re-
spectively. Likewise, the term Statistical Signal Processing is
a conceptual counterpart of Statistics. (Recall that parameter
estimation and hypothesis test are two main tasks of statistics.)

When a statistical model is not exact, we are motivated to
consider Robust Statistics [2]. Accordingly, we study robust
signal processing techniques: robust estimation (e.g., this arti-
cle) and robust detection [3]. It is proved that robust statistics
first identifies the least-favorable distribution from a distri-
butional ambiguity set, and then applies classical statistical
techniques over the least-favorable distribution [2], [3]. For
example, recall the Huber’s M-estimation: it is the maximum
likelihood estimation for the least-favorable distribution [4]
(Cf. classical estimation: the maximum likelihood estimation
for the nominal distribution).

This basic philosophy for robust statistics gives the simi-
larity between robust estimation (e.g., this article) and robust
detection [3]. Specifically, robust estimation first explores the
least-favorable distribution and then finds optimal estimate for
it, whereas robust detection first identifies the least-favorable
distributions and then applies optimal detector (i.e., optimal
hypothesis tester) over them. Thus, typical distributional am-
biguity sets in statistics such as ϵ-contamination sets, f -
divergence (a.k.a. ϕ-divergence) sets, Wasserstein sets, are
popular (and also natural) in both robust estimation and robust
detection communities; Cf. this article and [3]. However, note
that for robust estimation and robust detection, implications of
and metrics for “least-favorable” are different. Given the same

distributional ambiguity set(s), least-favorable distributions for
robust estimation are not guaranteed to be the same as those
for robust detection, e.g., comparing Lemma 1 of this article
with (53) and (54) of [3]. Usually, only one least-favorable
distribution is involved in a robust estimation problem. But
for a robust detection problem, at least two least-favorable
distributions exist (because at least two hypothesis classes are
active for testing). Below lists some consensus in robust esti-
mation and robust detection practices. They can be concluded
from either (resp. both) this article or (resp. and) [3].

1) Robust solutions perform satisfactorily (but not optimal)
for nominal models, and also satisfactorily for models
near the nominal models. In contrast, optimal solutions
for nominal models deteriorate significantly when true
models deviate from nominal ones. The price of the
robustness under uncertain conditions is sacrificing the
optimality under perfect conditions.

2) Robust solutions are last-hand choices. Robust solutions
do not reduce uncertainties but tolerate them. When
accuracy of the nominal model can be improved (i.e.,
uncertainties can be reduced), efforts should be put on
more exact modelling. Possible methods include, but are
not limited to, adaptively estimating parameters of the
model. For example, in state estimation contexts, it helps
a lot if we can jointly estimate some parameters of
the model when estimating the state; recall unknown-
input filters. However, parameters of the nominal model
cannot be estimated in all cases; see Subsection VI-A
“Frameworks Addressing Parameter Uncertainties” and
[3, Sec. III].

3) The distributional ambiguity sets can be neither too large
nor too small. An extremely large set makes the robust
solution too conservative, while an extremely small set
cannot offer sufficient robustness. See Fig. 1 (b) in the
main body of this article and [3, Sec. III]. However, the
problem of optimally tuning the sizes of distributional
ambiguity sets are open because for a real robust statisti-
cal signal processing problem, the true signal of interest is
unknown (i.e., the training data set is unavailable). There-
fore, practitioners can only try appropriate values for their
specific robust statistical signal processing problems.
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